Electron Tunneling Rates in Respiratory Complex I Are Tuned for Efficient Energy Conversion
نویسندگان
چکیده
منابع مشابه
Electron Tunneling Rates in Respiratory Complex I Are Tuned for Efficient Energy Conversion**
Respiratory complex I converts the free energy of ubiquinone reduction by NADH into a proton motive force, a redox reaction catalyzed by flavin mononucleotide(FMN) and a chain of seven iron-sulfur centers. Electron transfer rates between the centers were determined by ultrafast freeze-quenching and analysis by EPR and UV/Vis spectroscopy. The complex rapidly oxidizes three NADH molecules. The e...
متن کاملElectron tunneling in respiratory complex I.
NADH:ubiquinone oxidoreductase (complex I) plays a central role in the respiratory electron transport chain by coupling the transfer of electrons from NADH to ubiquinone to the creation of the proton gradient across the membrane necessary for ATP synthesis. Here the atomistic details of electronic wiring of all Fe/S clusters in complex I are revealed by using the tunneling current theory and co...
متن کاملEnergy conversion, redox catalysis and generation of reactive oxygen species by respiratory complex I☆
Complex I (NADH:ubiquinone oxidoreductase) is critical for respiration in mammalian mitochondria. It oxidizes NADH produced by the Krebs' tricarboxylic acid cycle and β-oxidation of fatty acids, reduces ubiquinone, and transports protons to contribute to the proton-motive force across the inner membrane. Complex I is also a significant contributor to cellular oxidative stress. In complex I, NAD...
متن کاملReal-time electron transfer in respiratory complex I.
Electron transfer in complex I from Escherichia coli was investigated by an ultrafast freeze-quench approach. The reaction of complex I with NADH was stopped in the time domain from 90 mus to 8 ms and analyzed by electron paramagnetic resonance (EPR) spectroscopy at low temperatures. The data show that after binding of the first molecule of NADH, two electrons move via the FMN cofactor to the i...
متن کاملLowest order in inelastic tunneling approximation: Efficient scheme for simulation of inelastic electron tunneling data
We have developed an efficient and accurate formalism which allows the simulation at the ab initio level of inelastic electron tunneling spectroscopy data under a scanning tunneling microscope setup. It exploits fully the tunneling regime by carrying out the structural optimization and vibrational mode calculations for surface and tip independently. The most relevant interactions in the inelast...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Angewandte Chemie International Edition
سال: 2015
ISSN: 1433-7851
DOI: 10.1002/anie.201410967